Chapter Review 6

$1 \mathrm{P}(Y<y)=1-\mathrm{P}(Y>y)$
So $\mathrm{P}(Y<y)=0.99 \Rightarrow \mathrm{P}(Y>y)=0.01$
$\chi_{10}^{2}(1 \%)=23.209$, so $\mathrm{P}\left(\chi_{10}^{2}>23.209\right)=0.01 \Rightarrow y=23.209$
$2 \chi_{8}^{2}(5 \%)=15.507$, so $\mathrm{P}\left(\chi_{8}^{2}>15.507\right)=0.05 \Rightarrow x=15.507$
3 Degrees of freedom $=(5-1) \times(3-1)=8$
From the tables: $\chi_{8}^{2}(5 \%)=15.507$
Critical region is $\chi^{2}>15.507$
4 Amalgamation gives a 3×4 contingency table.
Degrees of freedom $=(4-1) \times(3-1)=6$
Critical value is $\chi_{6}^{2}(5 \%)=12.592$
$5 \mathrm{H}_{0}$: There is no association between catching a cold and taking the new medicine.
H_{1} : There is an association between catching a cold and taking the new medicine.
These are the observed frequencies $\left(O_{i}\right)$ with totals for each row and column:

	Cold	No cold	Total
Medicine	34	66	100
Placebo	45	55	100
Total	79	121	200

Calculate the expected frequencies $\left(E_{i}\right)$ for each cell. For example:
Expected frequency 'Cold' and 'Taken medicine' $=\frac{100 \times 79}{200}=39.5$
The expected frequency and test statistic $\left(X^{2}\right)$ calculations are:

$\boldsymbol{O}_{\boldsymbol{i}}$	$\boldsymbol{E}_{\boldsymbol{i}}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
34	39.5	0.766
66	60.5	0.5
45	39.5	0.766
55	60.5	0.5

$X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=2.53$
The number of degrees of freedom $v=(2-1)(2-1)=1$; from the tables: $\chi_{1}^{2}(5 \%)=3.841$

As 2.53 is less than 3.841, there is insufficient evidence to reject H_{0} at the 5% level. It appears taking the new medicine doesn't affect the chance of a person catching a cold.

INTERNATIONAL A LEVEL

Statistics 3

$6 \mathrm{H}_{0}$: The data can be modelled by a Poisson distribution.
H_{1} : The data cannot be modelled by Poisson distribution.
Total frequency $=38+32+10=80$
Mean $=\lambda=\frac{1 \times 32+2 \times 10}{80}=\frac{52}{80}=0.65$

Calculate the expected frequencies as follows:

$$
\begin{aligned}
& E_{0}=80 \times \mathrm{P}(X=0)=80 \times \frac{\mathrm{e}^{-0.65} 0.65^{0}}{0!}=41.764 \\
& E_{1}=80 \times \mathrm{P}(X=1)=80 \times \frac{\mathrm{e}^{-0.65} 0.65^{1}}{1!}=27.146 \\
& E_{2}=80 \times \mathrm{P}(X=2)=80 \times \frac{\mathrm{e}^{-0.65} 0.65^{2}}{2!}=8.823 \\
& E_{i>2}=80-(41.764+27.146+8.823)=2.267
\end{aligned}
$$

To get values for E greater than 5, combine the last two cells:

Number of breakdowns	$\mathbf{0}$	$\mathbf{1}$	$\geqslant \mathbf{2}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	38	32	10	80
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	41.764	27.146	11.090	80
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0.339	0.868	0.107	1.314

The number of degrees of freedom $v=1$ (three data cells with two constraints as λ is estimated by calculation)
From the tables: $\chi_{1}^{2}(5 \%)=3.841$

As 1.314 is less than 3.841 , there is insufficient evidence to reject H_{0} at the 5% level. The data may be modelled by a Poisson distribution.

INTERNATIONAL A LEVEL

Statistics 3

$7 \mathrm{H}_{0}$: There is no association between gender and passing a driving test at the first attempt.
H_{1} : There is an association between gender and passing a driving test at the first attempt.
These are the observed frequencies $\left(O_{i}\right)$ with totals for each row and column:

	Pass	Fail	Total
Male	23	27	50
Female	32	18	50
Total	55	45	100

The expected frequency and test statistic $\left(X^{2}\right)$ calculations are:

$\boldsymbol{O}_{\boldsymbol{i}}$	$\boldsymbol{E}_{\boldsymbol{i}}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
23	27.5	0.736
27	22.5	0.9
32	27.5	0.736
18	22.5	0.9

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=3.272
$$

The number of degrees of freedom $v=(2-1)(2-1)=1$; from the tables: $\chi_{1}^{2}(10 \%)=2.705$
As 3.27 is greater than 2.705 , reject H_{0} at the 10% level. Conclude there is evidence of an association between gender and passing a driving test at the first attempt.

8 a We would expect each box to have an equal chance of being opened, and so would expect each box to have been opened 20 times.
b H_{0} : The data can be modelled by a discrete uniform distribution.
H_{1} : The data cannot be modelled by a discrete uniform distribution.
The observed and expected results are:

Box number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	20	16	25	18	21
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	20	20	20	20	20
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0	0.8	1.25	0.2	0.05

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=2.3
$$

Degrees of freedom $v=4$ (five data cells with a single constraint); from the tables:

$$
\chi_{4}^{2}(5 \%)=9.488
$$

As 2.3 is less than 9.488, there is insufficient evidence to reject H_{0} at the 5% level.
The data may be modelled by a discrete uniform distribution.

INTERNATIONAL A LEVEL

Statistics 3

9 a Total number of dead flies $=0 \times 1+1 \times 1+2 \times 5+3 \times 11+4 \times 24+5 \times 8=180$
Total number of flies sprayed $=50 \times 5=250$
So $\mathrm{P}($ fly dies when sprayed $)=\frac{180}{250}=0.72$
b H_{0} : A B($5,0.72$) distribution is a suitable model for the data. H_{1} : The data cannot be modelled by a $\mathrm{B}(5,0.72)$ distribution.

Find the expected frequencies by multiplying the total frequency 50 samples by the probability $\mathrm{P}(X=i)$ using the probability equation for a binomial random variable.

$$
\begin{aligned}
& E_{0}=50 \times \mathrm{P}(X=0)=50 \times\binom{ 5}{0} \times 0.72^{0} \times 0.28^{5}=0.086 \\
& E_{1}=50 \times \mathrm{P}(X=1)=50 \times\binom{ 5}{1} \times 0.72^{1} \times 0.28^{4}=1.1064 \\
& E_{2}=50 \times \mathrm{P}(X=2)=50 \times\binom{ 5}{2} \times 0.72^{2} \times 0.28^{3}=5.6900
\end{aligned}
$$

Combine to get all E values to be 5 or more

Similarly $E_{3}=14.6313, E_{4}=18.8117, E_{5}=9.6746$

After combining the relevant cells, this gives:

Number of dead flies	$\leqslant \mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	7	11	24	8	50
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	6.8825	14.6313	18.8117	9.6476	50
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0.0020	0.9012	1.4309	0.2905	2.62

The number of degrees of freedom $v=2$ (four data cells with two constraints as p is estimated by calculation)
From the tables: $\chi_{2}^{2}(5 \%)=5.991$

As 2.62 is less than 5.991 , there is insufficient evidence to reject H_{0} at the 5% level. The distribution $\mathrm{B}(5,0.72)$ may be a suitable model for the data.

INTERNATIONAL A LEVEL

Statistics 3

$10 \mathrm{H}_{0}$: The data can be modelled by a Poisson distribution.
H_{1} : The data cannot be modelled by Poisson distribution.
Total frequency $=112+56+40=208$
Mean $=\lambda=\frac{1 \times 56+2 \times 40}{208}=\frac{136}{208}=0.654$ (3 d.p.)
Calculate the expected frequencies as follows:
$E_{0}=208 \times \mathrm{P}(X=0)=208 \times \frac{\mathrm{e}^{-0.654} 0.654^{0}}{0!}=108.152$
$E_{1}=208 \times \mathrm{P}(X=1)=208 \times \frac{\mathrm{e}^{-0.654} 0.654^{1}}{1!}=70.731$
$E_{2}=208 \times \mathrm{P}(X=2)=208 \times \frac{\mathrm{e}^{-0.654} 0.654^{2}}{2!}=23.129$
$E_{i>2}=208-(108.152+70.731+23.129)=5.988$
This gives all E values of 5 or more:

Number of accidents	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\geqslant \mathbf{3}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	112	56	40	0	208
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	108.152	70.731	23.129	5.988	208
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0.1369	3.0680	12.2062	5.988	21.499

Degrees of freedom $v=2$ (four data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_{2}^{2}(5 \%)=5.991$

As 21.5 is greater than 5.991 , reject H_{0} at the 5% level. This suggests that the data cannot be modelled by $\operatorname{Po}(0.654)$
$11 \mathrm{H}_{0}$: Rocks in site B occur with the same distribution as seen in the sample from site A
H_{1} : Rocks in site B do not occur with the same distribution as seen in the sample from site A
In the sample from site A, Igneous : Sedimentary : Other $=6: 11: 3$
Applying this to the total 60 stones collected in site B to obtain expected values:

Rock type	Igneous	Sedimentary	Other	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	10	35	15	60
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	18	33	9	60
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	3.556	0.121	4	7.677

Degrees of freedom $v=3-1=2$, and from the tables: $\chi_{2}^{2}(5 \%)=5.991$

As 7.677 is greater than 5.991 , reject H_{0} at the 5% level. The distribution of rocks at Site B does not match the distribution seen in the sample from site A.

INTERNATIONAL A LEVEL

Statistics 3
12 a Mean $=\frac{1 \times 4+2 \times 7+3 \times 8+4 \times 10+5 \times 6+6 \times 7+7 \times 4+8 \times 4}{4+7+8+10+6+7+4+4}=\frac{214}{50}=4.28$
b H_{0} : The data can be modelled by a $\operatorname{Po}(4.28)$ distribution.
H_{1} : The data cannot be modelled by $\operatorname{Po}(4.28)$ distribution.
Calculate the expected frequencies as follows:

$$
\begin{aligned}
& E_{0}=50 \times \mathrm{P}(X=0)=50 \times \frac{\mathrm{e}^{-4.28} 4.28^{0}}{0!}=0.6921 \\
& E_{1}=50 \times \mathrm{P}(X=1)=50 \times \frac{\mathrm{e}^{-4.28} 4.28^{1}}{1!}=2.9623
\end{aligned}
$$

$$
E_{2}=50 \times \mathrm{P}(X=2)=50 \times \frac{\mathrm{e}^{-4.28} 4.28^{2}}{2!}=6.3394
$$

$$
E_{3}=50 \times \mathrm{P}(X=3)=50 \times \frac{\mathrm{e}^{-4.28} 4.28^{3}}{3!}=9.0442
$$

Similarly $E_{4}=9.6773, E_{5}=8.2838, E_{6}=5.9091$ and $E_{\mathrm{i} \geq 7}=7.0918$
After combining cells to ensure all values of E are greater than 5 , this gives:

Weekly sales	$\boldsymbol{\leqslant}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\geqslant \mathbf{7}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	11	8	10	6	7	8	50
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	9.9938	9.0442	9.6773	8.2838	5.9091	7.0918	50
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0.1013	0.1206	0.0108	0.6296	0.2014	0.1163	1.18

Degrees of freedom $v=4$ (six data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_{4}^{2}(5 \%)=9.488$

As 1.18 is less than 9.488 , there is insufficient evidence to reject H_{0} at the 5% level. The distribution $\mathrm{Po}(4.28)$ may be a suitable model for the data.

INTERNATIONAL A LEVEL

Statistics 3

$13 \mathrm{H}_{0}$: There is no association between gender and left- and right-handedness.
H_{1} : There is an association between gender and left- and right-handedness.
These are the observed frequencies $\left(O_{i}\right)$ with totals for each row and column:

	Left-handed	Right-handed	Total
Male	100	600	700
Female	80	800	880
Total	180	1400	1580

Calculate the expected frequencies $\left(E_{i}\right)$ for each cell. For example:
Expected frequency 'Male' and 'Left-handed' $=\frac{700 \times 180}{1580}=79.747$
The expected frequency and test statistic $\left(X^{2}\right)$ calculations are:

$\boldsymbol{O}_{\boldsymbol{i}}$	$\boldsymbol{E}_{\boldsymbol{i}}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
100	79.747	5.1436
600	620.253	0.6613
80	100.253	4.0915
800	779.747	0.5260

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=10.42
$$

The number of degrees of freedom $v=(2-1)(2-1)=1$; from the tables: $\chi_{1}^{2}(5 \%)=3.841$

As 10.42 is greater than 3.841 , reject H_{0} at the 5% level. Conclude there is evidence of an association between gender and left- and right-handedness in this population.

INTERNATIONAL A LEVEL

Statistics 3

14 a H_{0} : There is no association between gender and preferred science subject.
H_{1} : There is no association between gender and preferred science subject.
b Total females $=130$; total biology $=68$; total individuals sampled $=300$
$E_{F, B i o}=\frac{130 \times 68}{300}=29.47$ (2 d.p.)
c The expected frequency and test statistic $\left(X^{2}\right)$ calculations are:

$\boldsymbol{O}_{\boldsymbol{i}}$	$\boldsymbol{E}_{\boldsymbol{i}}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
74	$\frac{170 \times 119}{300}=67.43$	0.6401
28	$\frac{170 \times 68}{300}=38.53$	2.8778
68	$\frac{170 \times 113}{300}=64.03$	0.2461
45	$\frac{130 \times 119}{300}=51.57$	0.8370
40	$\frac{130 \times 68}{300}=29.47$	3.7625
45	$\frac{130 \times 113}{300}=48.97$	0.3218

$X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=8.685$
d The number of degrees of freedom $v=(3-1)(2-1)=2$; from the tables: $\chi_{2}^{2}(1 \%)=9.210$ As 8.685 is less than 9.210 , there is insufficient evidence to reject H_{0} at the 1% level.
e From the tables: $\chi_{2}^{2}(5 \%)=5.991$
As 8.685 is greater than $5.991, \mathrm{H}_{0}$ would be rejected at the 5% significance level.

INTERNATIONAL A LEVEL

15 a i $\quad \mathrm{P}(X=1)=\frac{\mathrm{e}^{-2.15} \times 2.15^{1}}{1!}=0.2504$ (4 d.p.)
ii $\mathrm{P}(X>2)=1-\mathrm{P}(X \leqslant 2)=1-0.6361=0.3639(4$ d.p. $)$
b Mean calls received $=\frac{\sum f x}{\sum f}=\frac{10 \times 0+12 \times 1+14 \times 2+12 \times 3+8 \times 4+3 \times 5+1 \times 6}{60}=\frac{129}{60}=2.15$
c Expected frequency $E_{x}=60 \times \mathrm{P}(X=x)$
$a=60 \times \mathrm{P}(X=2)=60 \times 0.2692=16.15$ (2 d.p.)
$b=60-(6.99+15.03+a+11.58+6.22+2.67)=1.36$
d H_{0} : The data is drawn from a Poisson distribution.
H_{1} : The data is not drawn from a Poisson distribution.
e From part c, the observed and expected frequencies are:

Number of calls	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\geqslant \mathbf{6}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	10	12	14	12	8	3	1	60
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	6.99	15.03	16.15	11.58	6.22	2.67	1.36	60

The final three cells should be combined so that the expected value in each cell is at least 5 .
f The calculation of the test statistic is:

Number of calls	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\geqslant \mathbf{4}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	10	12	14	12	12	60
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	6.99	15.03	16.15	11.58	10.25	60
$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	1.2962	0.6108	0.2862	0.1523	0.2988	2.507

Degrees of freedom $v=3$ (five data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_{3}^{2}(5 \%)=7.815$

As 2.507 is less than 7.815 , there is insufficient evidence to reject H_{0} at the 5% level and to conclude that the data is not drawn from Poisson distribution.

INTERNATIONAL A LEVEL

Statistics 3

Solution Bank
Pearson
16 Each interval is 10 units, therefore the probability of a randomly selected bar falling within a given interval is $\frac{10}{60}=\frac{1}{6}$

	Probability	$\mathbf{E}_{\boldsymbol{i}}$	$\mathbf{O}_{\boldsymbol{i}}$
$0 \leq d<10$	$\frac{1}{6}$	16.67	15
$10 \leq d<20$	$\frac{1}{6}$	16.67	17
$20 \leq d<30$	$\frac{1}{6}$	16.67	18
$30 \leq d<40$	$\frac{1}{6}$	16.67	20
$40 \leq d<50$	$\frac{1}{6}$	16.67	12
$50 \leq d<60$	$\frac{1}{6}$	16.67	18

$$
\begin{aligned}
\chi_{\text {test }}^{2} & =\frac{(15-16.67)^{2}}{16.67}+\frac{(17-16.67)^{2}}{16.67}+\frac{(18-16.67)^{2}}{16.67}+\frac{(20-16.67)^{2}}{16.67}+\frac{(12-16.67)^{2}}{16.67}+\frac{(18-16.67)^{2}}{16.67} \\
& =2.36
\end{aligned}
$$

There are 6 cells and 1 restriction, therefore, $v=6-1=5$

$$
\begin{aligned}
& \chi_{\text {crit }}^{2}(5)=11.070 \\
& \chi_{\text {test }}^{2}(5)=2.36<\chi_{\text {crit }}^{2}(5)=11.070
\end{aligned}
$$

Therefore, the fracture distances can be modelled by a uniform distribution.

	Midpoint	\boldsymbol{f}	Midpoint $\times \boldsymbol{f}$	$\mathbf{(M i d p o i n t) ~}^{\mathbf{2}}$	(Midpoint) ${ }^{\mathbf{2}} \times \boldsymbol{f}$
	2.5	7	17.5	6.25	43.75
	7.5	63	472.5	56.25	3543.75
	12.5	221	2762.5	156.25	34531.25
	17.5	177	3097.5	306.25	54206.25
	22.5	32	720	306.25	26200.00
Totals			$\mathbf{7 0 7 0}$		$\mathbf{1 0 8 5 2 5}$

$$
\begin{aligned}
\bar{x} & =\frac{7070}{500} \\
& =14.14
\end{aligned}
$$

$$
\begin{aligned}
s^{2} & =\frac{108525}{500}-\bar{x}^{2} \\
& =17.11
\end{aligned}
$$

H_{0} : Call length can be modelled by a normal distribution.
H_{1} : Call length does not approximate a normal distribution.

	$Z=\left(\frac{l-\bar{X}}{s}\right)$	$\mathbf{F}(\boldsymbol{Z})$	$\mathbf{P}(\boldsymbol{Z})$	$\mathbf{E}_{\boldsymbol{i}}$	$\mathbf{O}_{\boldsymbol{i}}$
$l<5$	-2.210	0.0136	0.0136	6.80	7
$5 \leq l<10$	-1.001	0.1584	0.1448	72.4	63
$10 \leq l<15$	0.208	0.5824	0.4240	212	221
$15 \leq l<20$	1.417	0.9218	0.3394	169.7	177
$l \geq 20$			0.0782	389.1	32

$$
\begin{aligned}
\chi_{\text {test }}^{2} & =\frac{(7-6.8)^{2}}{6.8}+\frac{(63-72.4)^{2}}{72.4}+\frac{(221-212)^{2}}{212}+\frac{(177-169.7)^{2}}{169.7}+\frac{(32-39.1)^{2}}{39.1} \\
& =3.212
\end{aligned}
$$

There are 5 cells and 3 restrictions, therefore, $v=5-3=2$
$\chi_{\text {crit }}^{2}(2)=5.991$
$\chi_{\text {test }}^{2}(2)=3.212<\chi_{\text {crit }}^{2}(2)=5.991$
Not significant, therefore accept H_{0}.

